
Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 1 © Andrew Davison 2017

Part 2: Writer Modules

Chapter 10. The Linguistics API

The linguistics API has four main components – a spell

checker, a hyphenator, a thesaurus, and a grammar

checker (which Office calls a proof reader). I'll look at

how to program using the spell checker, thesaurus, and

two grammar checkers, but I'll skip the hyphenator which

is easier to use interactively through Office's GUI.

However, if you have an urge to hyphenate, then

LingusticExamples.java in the Developer's Guide

examples contains some code; it can be downloaded from

http://api.libreoffice.org/examples/DevelopersGuide/OfficeDev/Linguistic/Linguistic

Examples.java.

I'll describe two examples, Lingo.java and LingoFile.java. The first lists information

about the linguistic services, then uses the spell checker, thesaurus, and grammar

checker 'standalone' without having to load an Office document first. LingoFile.java

automatically spell checks and grammar checks a complete file, reporting errors

without altering the document.

One topic I'll be ignoring is how to create and edit the data files used by the linguistic

services. For that task, you should have a look at PTG (Proofing Tool GUI) developed

by Marco Pinto at http://marcoagpinto.cidadevirtual.pt/proofingtoolgui.html. It's an

open source tool for editing Office's dictionary, thesaurus, hyphenation, and

autocorrect files.

Another area I'll be skipping is the use of events and listeners. Please refer to the

"Linguistics" sub-section of chapter 6 of the Developer's Guide for details (loGuide

Linguistics). Listener code can be found in LinguisticExamples.java mentioned

above.

The linguistic features accessible through Office's GUI are explained in chapter 3 of

the "Writer Guide", available at http://www.libreoffice.org/get-help/documentation/,

starting from the section called "Checking spelling and grammar".

An older information source is the "Lingucomponent Project" page at the OpenOffice

website, http://www.openoffice.org/lingucomponent/, which links to some useful

tools, such as alternative grammar checkers. An interesting set of slides by Daniel

Naber explaining the state of the project in 2005 can be found at

http://www.danielnaber.de/publications/, along with more recent material.

1. The Linguistic Tools

Lingo.java prints a variety of information about the linguistics services:

public static void main(String args[])

{

Topics: Linguistic

Tools; Using the Spell

Checker; Using the

Thesaurus; Grammar

Checking; Guessing the

Language used in a

String; Spell Checking

and Grammar Checking

a Document

Example folders: "Lingu

Tests" and "Utils"

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 2 © Andrew Davison 2017

 Lo.loadOffice();

 // print linguistics info

 Write.dictsInfo();

 XLinguProperties linguProps = Write.getLinguProperties();

 Props.showProps("Linguistic Manager", linguProps);

 Info.listExtensions();

 // get lingo manager

 XLinguServiceManager2 lingoMgr =

 Lo.createInstanceMCF(XLinguServiceManager2.class,

 "com.sun.star.linguistic2.LinguServiceManager");

 if (lingoMgr == null) {

 System.out.println("No linguistics manager found");

 Lo.closeOffice();

 return;

 }

 Write.printServicesInfo(lingoMgr);

 : // code for using the services; see later

 Lo.closeOffice();

} // end of main()

1.1. Dictionary Information

Write.dictsInfo() prints brief details about Office's dictionaries:

No. of dictionaries: 5

 standard.dic (1); active; ""; positive

 en-GB.dic (42); active; "GB"; positive

 en-US.dic (42); active; "US"; positive

 technical.dic (258); active; ""; positive

 IgnoreAllList (0); active; ""; positive

No. of conversion dictionaries: 0

Each line includes the name of a dictionary, its number of entries, whether it's active

(i.e. being used), its locale, and whether it's a positive, negative, or mixed dictionary.

A positive dictionary holds correctly spelled words only, while a negative one lists

incorrectly spelt words. A mixed dictionary contains both correctly and incorrectly

spelt entries.

If a dictionary has a locale, such as "GB" for en-GB.dic, then it's only utilized during

spell checking if its locale matches Office's. The Office locale can be set via the Tools

> Options > Language Settings > "Languages" dialog shown in Figure 1.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 3 © Andrew Davison 2017

Figure 1. The Languages Dialog.

Figure 1 shows that my version of Office is using the American English locale, and so

en-GB.dic won't be consulted when text is spell checked.

Write.dictsInfo() is defined as:

// in the Write class

public static void dictsInfo()

{

 XSearchableDictionaryList dictList =

 Lo.createInstanceMCF(XSearchableDictionaryList.class,

 "com.sun.star.linguistic2.DictionaryList");

 if (dictList == null)

 System.out.println("No list of dictionaries found");

 else

 printDictsInfo(dictList);

 XConversionDictionaryList cdList =

 Lo.createInstanceMCF(XConversionDictionaryList.class,

 "com.sun.star.linguistic2.ConversionDictionaryList");

 if (cdList == null)

 System.out.println("No list of conversion dictionaries found");

 else

 printConDictsInfo(cdList);

} // end of dictsInfo()

It retrieves a conventional dictionary list first (called dictList), and iterates through its

dictionaries using printDictsInfo(). Then it obtains the conversion dictionary list

(called csList), and iterates over that with printConDictsInfo().

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 4 © Andrew Davison 2017

Figure 3 shows the main services and interfaces used by ordinary dictionaries.

Figure 3. The DictionaryList and Dictionary Services.

Each dictionary in the list has an XDictionary interface which contains methods for

accessing and changing its entries. printDictsInfo() retrieves an XDictionary array

from the list, and prints out a summary of each dictionary:

// in the Write class

public static void printDictsInfo(

 XSearchableDictionaryList dictList)

{ if (dictList == null) {

 System.out.println("Dictionary list is null");

 return;

 }

 System.out.println("No. of dictionaries: " +

 dictList.getCount());

 XDictionary[] dicts = dictList.getDictionaries();

 for(XDictionary dict : dicts)

 System.out.println(" " + dict.getName() +

 " (" + dict.getCount() +

 "); " + (dict.isActive() ? "active" : "na") +

 "; \"" + dict.getLocale().Country +

 "\"; " +

 getDictType(dict.getDictionaryType()));

 System.out.println();

} // end of printDictsInfo()

public static String getDictType(DictionaryType dt)

{

 if (dt == DictionaryType.POSITIVE)

 return "positive";

 else if (dt == DictionaryType.NEGATIVE)

 return "negative";

 else if (dt == DictionaryType.MIXED)

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 5 © Andrew Davison 2017

 return "mixed";

 else

 return "??";

} // end of getDictType()

Conversion dictionaries map words in one language/dialect to corresponding words in

another language/dialect. Figure 4 shows that conversion dictionaries are organized in

a similar way to ordinary ones. The interfaces for manipulating a conversion

dictionary are XConversionDictionary and XConversionPropertyType.

Figure 4. The ConversionDictionaryList and ConversionDictionary Services.

Write.dictsInfo() calls printConDictsInfo() to print the names of the conversion

dictionaries – by extracting an XNameContainer from the dictionary list, and then

pulling a list of the names from the container:

// in the Write clas

public static void printConDictsInfo(

 XConversionDictionaryList cdList)

{ if (cdList == null) {

 System.out.println("Conversion Dictionary list is null");

 return;

 }

 XNameContainer dcCon = cdList.getDictionaryContainer();

 String[] dcNames = dcCon.getElementNames();

 System.out.println("No. of conversion dictionaries: " +

 dcNames.length);

 for(String dcName : dcNames)

 System.out.println(" " + dcName);

 System.out.println();

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 6 © Andrew Davison 2017

} // end of printConDictsInfo()

Output similar to Write.dictsInfo() can be viewed via Office's Tools > Options>

Language Settings > "Writing Aids" dialog, shown in Figure 5.

Figure 5. The Writing Aids Dialog.

The dictionaries are listed in the second pane of the dialog. Also, at the bottom of the

window is a "Get more dictionaries online" hyperlink which takes the user to Office's

extension website, and displays the "Dictionary" category (see Figure 6).

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 7 © Andrew Davison 2017

Figure 6. The Dictionary Extensions at the LibreOffice Website.

The URL of the page in Figure 6 is:

http://extensions.libreoffice.org/

 extension-center?getCategories=Dictionary

The dictionary category currently has 94 entries, but if you can't find what you're

looking for, don't forget the extensions for OpenOffice, at:

http://extensions.openoffice.org/

If you're unclear about how to install extensions, the process is explained online at

https://wiki.documentfoundation.org/Documentation/HowTo/install_extension, or in

the "Installing Extensions" guide available at http://www.libreoffice.org/get-

help/documentation/.

1.2. Linguistic Properties

Back in the Lingo.java example, Write.getLinguProperties() returns an instance of

XLinguProperties, and its properties are printed by calling Props.showProps():

// in Lingo.java

XLinguProperties linguProps = Write.getLinguProperties();

Props.showProps("Linguistic Manager", linguProps);

The output:

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 8 © Andrew Davison 2017

Linguistic Manager Properties

 DefaultLanguage == 0

 DefaultLocale == com.sun.star.lang.Locale@1f95c5d

 DefaultLocale_CJK == com.sun.star.lang.Locale@cd43c2

 DefaultLocale_CTL == com.sun.star.lang.Locale@a8f0b4

 HyphMinLeading == 2

 HyphMinTrailing == 2

 HyphMinWordLength == 5

 IsGermanPreReform == Any[Type[void], null]

 IsHyphAuto == false

 IsHyphSpecial == true

 IsIgnoreControlCharacters == true

 IsSpellAuto == false

 IsSpellCapitalization == true

 IsSpellHide == Any[Type[void], null]

 IsSpellInAllLanguages == Any[Type[void], null]

 IsSpellSpecial == true

 IsSpellUpperCase == true

 IsSpellWithDigits == false

 IsUseDictionaryList == true

 IsWrapReverse == false

These properties are explained in the online documentation for the XLinguProperties

interface (lodoc XLinguProperties), and also in the Developer's Guide.

The properties are spread across several dialogs in Office's GUI, starting from the

Tools > Options > "Language Settings" menu item. However, most of them are in the

"Options" pane of the "Writing Aids" Dialog in Figure 5.

1.3. Installed Extensions

Additional dictionaries, and other language tools such as grammar checkers, are

loaded into Office as extensions, so calling Info.listExtensions() can be informative.

The output on one of my test machine is:

Extensions:

1. ID: org.openoffice.en.hunspell.dictionaries

 Version: 2011.12.05.1

 Loc: file:///C:/Program%20Files/LibreOffice%205/program/

 ../share/extensions/dict-en

2. ID: French.linguistic.resources.from.Dicollecte.by.OlivierR

 Version: 5.4.1

 Loc: file:///C:/Program%20Files/LibreOffice%205/program/

 ../share/extensions/dict-fr

3. ID: org.openoffice.languagetool.oxt

 Version: 3.4

 Loc: file:///C:/Program%20Files/LibreOffice%205/program/

 ../share/uno_packages/cache/uno_packages/

 lu4156ef34f.tmp_/LanguageTool-3.4.oxt

4. ID: com.sun.star.comp.Calc.NLPSolver

 Version: 0.9

 Loc: file:///C:/Program%20Files/LibreOffice%205/program/

 ../share/extensions/nlpsolver

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 9 © Andrew Davison 2017

5. ID: spanish.es_ANY.dicts.from.rla-es

 Version: 0.8

 Loc: file:///C:/Program%20Files/LibreOffice%205/program/

 ../share/extensions/dict-es

6. ID: com.sun.wiki-publisher

 Version: 1.2.0

 Loc: file:///C:/Program%20Files/LibreOffice%205/program/

 ../share/extensions/wiki-publisher

The "Loc" entries are the directories or OXT files containing the extensions. Most

extensions are placed in the <OFFICE>\share\extensions\ folder on Windows.

Office can display similar information via its Tools > "Extension Manager" dialog, as

in Figure 7.

Figure 7. The Extension Manager Dialog.

The code for Info.listExtensions():

// in the Info class

public static void listExtensions()

{

 XPackageInformationProvider pip = getPip();

 if (pip == null)

 System.out.println("No package info provider found");

 else {

 String[][] extsTable = pip.getExtensionList();

 System.out.println("\nExtensions:");

 String serviceName;

 for(int i=0; i < extsTable.length; i++) {

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 10 © Andrew Davison 2017

 System.out.println((i+1) + ". ID: " + extsTable[i][0]);

 System.out.println(" Version: " + extsTable[i][1]);

 System.out.println(" Loc: " +

 pip.getPackageLocation(extsTable[i][0]));

 System.out.println();

 }

 }

} // end of listExtensions()

public static XPackageInformationProvider getPip()

{ return PackageInformationProvider.get(Lo.getContext()); }

Extensions are accessed via the XPackageInformationProvider interface.

1.4. Examining the Lingu Services

The LinguServiceManager provides access to three of the four main linguistic

services: the spell checker, the hyphenator, and thesaurus.The proof reader (i.e. the

grammar checker) is managed by a separate Proofreader service, which I'll explain

later.

Figure 8 shows the interfaces accessible from the LinguServiceManager service.

Figure 8. The LinguServiceManager Service and Interfaces.

In Lingo.java, the LinguServiceManager is instantiated and then

Write.printServicesInfo() reports details about its services:

// in Lingo.java

 :

// get lingo manager

XLinguServiceManager2 lingoMgr =

 Lo.createInstanceMCF(XLinguServiceManager2.class,

 "com.sun.star.linguistic2.LinguServiceManager");

if (lingoMgr == null) {

 System.out.println("No linguistics manager found");

 Lo.closeOffice();

 return;

}

Write.printServicesInfo(lingoMgr);

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 11 © Andrew Davison 2017

Typical output from Write.printServicesInfo():

Available Services:

SpellChecker (1):

 org.openoffice.lingu.MySpellSpellChecker

Thesaurus (1):

 org.openoffice.lingu.new.Thesaurus

Hyphenator (1):

 org.openoffice.lingu.LibHnjHyphenator

Proofreader (2):

 org.languagetool.openoffice.Main

 org.libreoffice.comp.pyuno.Lightproof.en

Configured Services:

SpellChecker (1):

 org.openoffice.lingu.MySpellSpellChecker

Thesaurus (1):

 org.openoffice.lingu.new.Thesaurus

Hyphenator (1):

 org.openoffice.lingu.LibHnjHyphenator

Proofreader (1):

 org.languagetool.openoffice.Main

Locales for SpellChecker (43):

 AR AU BE BO BS BZ CA CA CH CL

 CO CR CU DO EC ES FR GB GH GT

 HN IE IN JM LU MC MW MX NA NI

 NZ PA PE PH PR PY SV TT US UY

 VE ZA ZW

Locales for Thesaurus (43):

 AR AU BE BO BS BZ CA CA CH CL

 CO CR CU DO EC ES FR GB GH GT

 HN IE IN JM LU MC MW MX NA NI

 NZ PA PE PH PR PY SV TT US UY

 VE ZA ZW

Locales for Hyphenator (43):

 AR AU BE BO BS BZ CA CA CH CL

 CO CR CU DO EC ES FR GB GH GT

 HN IE IN JM LU MC MW MX NA NI

 NZ PA PE PH PR PY SV TT US UY

 VE ZA ZW

Locales for Proofreader (94):

 AF AO AR AT AU BE BE

 BE BO BR BS BY BZ CA CA CD CH

 CH CH CI CL CM CN CR CU DE DE

 DK DO EC ES ES ES ES ES FI FR

 FR GB GH GR GT HN HT IE IN IN

 IN IR IS IT JM JP KH LI LT LU

 LU MA MC ML MX MZ NA NI NL NZ

 PA PE PH PH PL PR PT PY RE RO

 RU SE SI SK SN SV TT UA US US

 UY VE ZA ZW

The print-out contains three lists: a list of available services, a list of configured

services (i.e. ones that are activated inside Office), and a list of the locales available to

each service.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 12 © Andrew Davison 2017

Figure 8 shows that LinguServiceManager only manages the spell checker,

hyphenator, and thesaurus, and yet Write.printServicesInfo() includes information

about the proof reader. Somewhat confusingly, although LinguServiceManager

cannot instantiate a proof reader it can print information about it.

The output shows that two proofreader services are available

(org.languagetool.openoffice.Main and org.libreoffice.comp.pyuno.Lightproof.en),

but only one is configured (i.e. active). I'll explain this setup when I talk about the

proof reader later.

The three lists are generated by Write.printServicesInfo() calling

Write.printAvailServiceInfo(), Write.printConfigServiceInfo(), and

Write.printLocales():

// in the Writer class

public static void printServicesInfo(

 XLinguServiceManager2 lingoMgr)

{

 com.sun.star.lang.Locale loc =

 new com.sun.star.lang.Locale("en","US","");

 // American English locale

 System.out.println("Available Services:");

 printAvailServiceInfo(lingoMgr, "SpellChecker", loc);

 printAvailServiceInfo(lingoMgr, "Thesaurus", loc);

 printAvailServiceInfo(lingoMgr, "Hyphenator", loc);

 printAvailServiceInfo(lingoMgr, "Proofreader", loc);

 System.out.println();

 System.out.println("Configured Services:");

 printConfigServiceInfo(lingoMgr, "SpellChecker", loc);

 printConfigServiceInfo(lingoMgr, "Thesaurus", loc);

 printConfigServiceInfo(lingoMgr, "Hyphenator", loc);

 printConfigServiceInfo(lingoMgr, "Proofreader", loc);

 System.out.println();

 printLocales("SpellChecker", lingoMgr.getAvailableLocales(

 "com.sun.star.linguistic2.SpellChecker"));

 printLocales("Thesaurus", lingoMgr.getAvailableLocales(

 "com.sun.star.linguistic2.Thesaurus"));

 printLocales("Hyphenator", lingoMgr.getAvailableLocales(

 "com.sun.star.linguistic2.Hyphenator"));

 printLocales("Proofreader", lingoMgr.getAvailableLocales(

 "com.sun.star.linguistic2.Proofreader"));

 System.out.println();

} // end of printServicesInfo()

The choice of services depends on the current locale, so printServicesInfo() begins by

creating an American English locale, which matches my version of Office.

Write.printAvailServiceInfo() utilizes XLinguServiceManager.getAvailableServices()

to retrieve a list of the available services. In a similar way,

Write.printConfigServiceInfo() calls

XLinguServiceManager.getConfiguredServices(), and printLocales gets an array of

Locale objects from XLinguServiceManager.getAvailableLocales().

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 13 © Andrew Davison 2017

2. Using the Spell Checker

There's a few examples in Lingo.java of applying the spell checker to individual

words:

// in Lingo.java

XSpellChecker speller = lingoMgr.getSpellChecker();

Write.spellWord("horseback", speller);

Write.spellWord("ceurse", speller);

Write.spellWord("magisian", speller);

Write.spellWord("ellucidate", speller);

XLinguServiceManager.getSpellChecker() returns a reference to the spell checker,

and Write.spellWord() checks the supplied word. For the code above, the following is

printed:

* "ceurse" is unknown. Try:

No. of names: 8

 "curse" "course" "secateurs" "cerise"

 "surcease" "secure" "cease" "Ceausescu"

* "magisian" is unknown. Try:

No. of names: 7

 "magician" "magnesia" "Malaysian" "mismanage"

 "imagining" "mastication" "fumigation"

* "ellucidate" is unknown. Try:

No. of names: 7

 "elucidate" "elucidation" "hallucinate" "pellucid"

 "fluoridate" "elasticated" "illustrated"

Nothing is reported for "horseback" because that's correctly spelt, and spellWord()

returns the boolean true.

The SpellChecker service and its important interfaces are shown in Figure 9.

Figure 9. The SpellChecker Service and Interfaces.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 14 © Andrew Davison 2017

Write.spellWord() utilizes XSpellChecker.spell() to find a spelling mistake, then

prints the alternative spellings:

// in the Write class

public static boolean spellWord(String word, XSpellChecker speller)

{

 com.sun.star.lang.Locale loc =

 new com.sun.star.lang.Locale("en", "US", "");

 // American English

 PropertyValue[] props = new PropertyValue[0];

 XSpellAlternatives alts = speller.spell(word, loc, props);

 if (alts != null) {

 System.out.println("* \"" + word + "\" is unknown. Try:");

 String[] altWords = alts.getAlternatives();

 Lo.printNames(altWords);

 return false;

 }

 else

 return true;

} // end of spellWord()

XSpellChecker.spell() requires a locale and an array of properties, which I've left

empty. The properties are those associated with XLinguProperties, which were listed

above using Write.getLinguProperties(). Its output shows that "IsSpellCapitalization"

is presently true, which means that words in all-caps will be checked. The property

can be changed to false inside the PropertyValue array passed to

XSpellChecker.spell(). For example:

PropertyValue[] props =

 Props.makeProps("IsSpellCapitalization", false);

XSpellAlternatives alts = speller.spell(word, loc, props);

Now an incorrectly spelt word in all-caps, such as "CEURSE", will be skipped over.

This means that Write.spellWord("CEURSE", speller) should return true.

Unfortunately, XSpellChecker.spell() seems to ignore the property array, and still

reports "CEURSE" as incorrectly spelt.

Even a property change performed through the XLinguProperties interface, such as:

XLinguProperties linguProps = Write.getLinguProperties();

Props.setProperty(linguProps, "IsSpellCapitalization", false);

fails to change XSpellChecker.spell()'s behavior. The only way to make a change to

the linguistic properties that is acted upon is through the "Options" pane in the

"Writing Aids" dialog, as in Figure 10.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 15 © Andrew Davison 2017

Figure 10. Changing the Capitalization Property.

Office's default spell checker is Hunspell (from http://hunspell.github.io/), and has

been part of OpenOffice since v.2, when it replaced MySpell, adding several features

such as support for Unicode. The "MySpell" name lives on in a few places, such as in

the spelling service (org.openoffice.lingu.MySpellSpellChecker).

Hunspell offers extra properties in addition to those in the "Options" pane of the

"Writing Aids" dialog. They can be accessed through the Tools > Options > Language

Settings > "English sentence checking" dialog shown in Figure 11.

Figure 11. The English Sentence Checking Dialog.

The same dialog can also be reached through the Extension Manager window shown

back in Figure 7. Click on the "English Spelling dictionaries" extension, and then

press the "Options" button which appears as in Figure 12.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 16 © Andrew Davison 2017

Figure 12. The English Spelling Options Button.

Unfortunately, there appears to be no API for accessing these Hunspell options. The

best that can be done is to use a dispatch message to open the "English Sentence

Checking" dialog in Figure 11. This done by calling Write.openSentCheckOptions():

GUI.setVisible(doc, true); // Office must be visible...

Lo.wait(2000);

Write.openSentCheckOptions(); // for the dialog to appear

Write.openSentCheckOptions() uses an ".uno:OptionsTreeDialog" dispatch along

with an URL argument for the dialog's XML definition file:

// in the Writer class

public static void openSentCheckOptions()

// open "Options - Language Settings - English sentence checking

{

 XPackageInformationProvider pip = Info.getPip();

 String langExt = pip.getPackageLocation(

 "org.openoffice.en.hunspell.dictionaries");

 // System.out.println("Lang Ext: " + langExt);

 String url = langExt + "/dialog/en.xdl";

 PropertyValue[] props = Props.makeProps("OptionsPageURL", url);

 Lo.dispatchCmd("OptionsTreeDialog", props);

 Lo.wait(2000);

} // end of openSentCheckOptions()

The XML file's location is obtained in two steps. First the ID of the Hunspell service

("org.openoffice.en.hunspell.dictionaries") is passed to

XPackageInformationProvider.getPackageLocation() to obtain the spell checker's

installation folder. Figure 13 shows the directory on my machine.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 17 © Andrew Davison 2017

Figure 13. The Hunspell Installation Folder.

The directory contains a dialog\ subdirectory, which holds an XXX.xdl file that

defines the dialog's XML structure and data. The "XXX" name will be Office's locale

language, which in my case is "en".

The URL required by the "OptionsTreeDialog" dispatch is constructed by appending

"/dialog/en.xdl" to the installation folder string.

3. Using the Thesaurus

Lingo.java contains two examples of how to use the thesaurus:

// in Lingo.java

 :

XLinguServiceManager2 lingoMgr =

 Lo.createInstanceMCF(XLinguServiceManager2.class,

 "com.sun.star.linguistic2.LinguServiceManager");

 :

XThesaurus thesaurus = lingoMgr.getThesaurus();

Write.printMeaning("magician", thesaurus);

Write.printMeaning("elucidate", thesaurus);

The output from the first call to Write.printMeaning() is:

"magician" found in thesaurus; number of meanings: 2

1. Meaning: (noun) prestidigitator

 No. of synonyms: 6

 prestidigitator

 conjurer

 conjuror

 illusionist

 performer (generic term)

 performing artist (generic term)

2. Meaning: (noun) sorcerer

 No. of synonyms: 6

 sorcerer

 wizard

 necromancer

 thaumaturge

 thaumaturgist

 occultist (generic term)

XLinguServiceManager2.getThesaurus() returns an instance of XThesaurus whose

service and main interfaces are shown in Figure 14.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 18 © Andrew Davison 2017

Figure 14. The Thesaurus Service and Interfaces.

Write.printMeaning() calls XThesaurus.queryMeanings(), and prints the array of

results:

public static int printMeaning(String word, XThesaurus thesaurus)

{

 com.sun.star.lang.Locale loc =

 new com.sun.star.lang.Locale("en", "US", "");

 // American English

 PropertyValue[] props = new PropertyValue[0];

 XMeaning[] meanings = thesaurus.queryMeanings(word, loc, props);

 if (meanings == null) {

 System.out.println("\"" + word +

 "\" NOT found in thesaurus\n");

 return 0;

 }

 else {

 System.out.println("\"" + word + "\" found in thesaurus;

 number of meanings: " + meanings.length);

 for (int i=0; i < meanings.length; i++) {

 System.out.println((i+1) + ". Meaning: " +

 meanings[i].getMeaning());

 String[] synonyms = meanings[i].querySynonyms();

 System.out.println(" No. of synonyms: " + synonyms.length);

 for (int k=0; k < synonyms.length; k++)

 System.out.println(" " + synonyms[k]);

 System.out.println();

 }

 return meanings.length;

 }

} // end of printMeaning()

In a similar way to XSpellChecker.spell(), XThesaurus.queryMeanings() requires a

locale and an optional array of properties. printMeaning() utilizes American English,

and no properties.

If you need a non-English thesaurus which isn't part of Office, then look through the

dictionary extensions at http://extensions.libreoffice.org/extension-

center?getCategories=Dictionary; many include a thesaurus with the dictionary.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 19 © Andrew Davison 2017

Thesaurus data is stored as ".idx" and ".dat" files in the same directory as the spell

checker (i.e. in <OFFICE>\share\extensions\dict-en\), as can be seen in Figure 13.

The files are built from WordNet data (http://wordnet.princeton.edu/), but use a text-

based format explained very briefly in Daniel Naber's slides about the

Lingucomponent Project (at http://www.danielnaber.de/publications/ooocon2005-

lingucomponent.pdf). Also, the Lingucomponent website has some C++ code for

reading ".idx" and '.dat" files (in http://www.openoffice.org/lingucomponent/MyThes-

1.zip).

However, if you want to write code using a thesaurus independently of Office, then

I'd suggest programming with one of the many APIs for WordNet; there are currently

nine for Java, listed at http://wordnet.princeton.edu/wordnet/related-projects/#Java.

4. Grammar Checking

Office's default grammar checker (or proof reader) is Lightproof, a Python application

developed by László Németh. Lightproof.py, and its support files, are installed in the

same folder as the spell checker and thesaurus; on my machine that's

<OFFICE>\share\extensions\dict-en\.

Older versions of Lightproof are available from OpenOffice's extensions website at

http://extensions.services.openoffice.org/project/lightproof. One reason for

downloading the old version is that it contains documentation on adding new

grammar rules missing from the version installed in Office.

Another way to modify Lightproof's grammar rules is with its editor, which can be

obtained from http://extensions.libreoffice.org/extension-center/lightproof-editor.

There are a number of alternative grammar checkers for Office, including "After the

Deadline" (http://www.afterthedeadline.com/) and "LanguageTool"

(https://www.languagetool.org/), which are easily added to Office as extensions via

the "Language Tools" subsection of the website, at

http://extensions.libreoffice.org/extension-center?getCategories=Language%20Tools.

When I first coded my examples, I used the default Lightproof for grammar checking,

but it doesn't have a very extensive set of built-in grammar rules (it seems best at

catching punctuation mistakes). I switched to LanguageTool because of its larger set

of rules, and its support for many languages. I also like that it can be used as a

standalone Java library, separate from Office, and that its site includes lots of

documentation. Perhaps its biggest drawback is that it requires Java 8 or later.

Another issue is that LanguageTool and Lightproof cannot happily coexist inside

Office. Lightproof must be disabled and LanguageTool enabled via the Options >

Language Settings > Writing aids > "Available language modules" pane at the top of

Figure 15.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 20 © Andrew Davison 2017

Figure 15. Goodbye Lightproof, hello LanguageTool.

I used Write.printServicesInfo() earlier to list the available and configured services.

The output included:

Available Services:

 :

Proofreader (2):

 org.languagetool.openoffice.Main

 org.libreoffice.comp.pyuno.Lightproof.en

Configured Services:

 :

Proofreader (1):

 org.languagetool.openoffice.Main

"org.languagetool.openoffice.Main" refers to the LanguageTool extension, while

"org.libreoffice.comp.pyuno.Lightproof.en" is the English version of Lightproof.

This information can be used to set the proof reader. LanguageTool is made the

default by calling Write.setConfiguredServices() like so:

Write.setConfiguredServices(lingoMgr, "Proofreader",

 "org.languagetool.openoffice.Main");

Alternatively, Lightproof can be enabled with:

Write.setConfiguredServices(lingoMgr, "Proofreader",

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 21 © Andrew Davison 2017

 "org.libreoffice.comp.pyuno.Lightproof.en");

The code for Write.setConfiguredServices() is:

// in the Write class

public static void setConfiguredServices(

 XLinguServiceManager2 lingoMgr,

 String service, String implName)

{

 com.sun.star.lang.Locale loc =

 new com.sun.star.lang.Locale("en","US","");

 String[] implNames = { implName };

 lingoMgr.setConfiguredServices(

 "com.sun.star.linguistic2." + service, loc, implNames);

} // end of setConfiguredServices()

The function utilizes XLinguServiceManager.setConfiguredServices() to attach a

particular implementation service (e.g. LanguageTool) to a specified linguistic service

(e.g. the Proofreader).

4.1. Error Reporting Options

The kinds of errors reported by the proof reader can be adjusted through Office's GUI.

One configuration pane, used by both Lightproof and LanguageTool, is in the

"English Sentence Checking" dialog shown back in Figure 11. If you look closely, the

first group of check boxes are titled "Grammar checking".

If you install LanguageTool, Office's Tools menu will be modified to contain a new

"LanguageTool" submenu shown in Figure 16.

Figure 16. The LanguageTool Submenu.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 22 © Andrew Davison 2017

The "Options" menu item in the "LanguageTool" submenu brings up an extensive set

of options, reflecting the greater number of grammar rules in the checker (see Figure

17).

Figure 17. The LanguageTool Options Dialog.

Unfortunately, there seems to be no way to modify these options through Office's

Proofreader API.

4.2. Using the Proof Reader

In Lingo.java the proof reader is loaded and called like so:

// in Lingo.java

 :

XProofreader proofreader = Write.loadProofreader();

System.out.println("Proofing...");

int numErrs =

 Write.proofSentence("i dont have one one dogs.", proofreader);

System.out.println("No. of proofing errors: " + numErrs + "\n");

The output is:

Proofing...

G* This sentence does not start with an uppercase letter in: "i"

 Suggested change: "I"

G* Spelling mistake in: "dont"

 Suggested change: "don't"

G* Word repetition in: "one one"

 Suggested change: "one"

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 23 © Andrew Davison 2017

No. of proofing errors: 3

The proof reader isn't accessed through the linguistics manager; instead a Proofreader

service is created, and its interfaces employed. A simplified view of the services and

interfaces are shown in Figure 18.

Figure 18. The Proofreader Service and Interfaces.

Write.loadProofreader() creates the service:

public static XProofreader loadProofreader()

{ return Lo.createInstanceMCF(XProofreader.class,

 "com.sun.star.linguistic2.Proofreader"); }

Write.proofSentence() passes a sentence to XProofreader.doProofreading(), and prints

the errors inside the returned ProofreadingResult instance:

public static int proofSentence(String sent,

 XProofreader proofreader)

{ com.sun.star.lang.Locale loc =

 new com.sun.star.lang.Locale("en", "US", "");

 // American English

 PropertyValue[] props = new PropertyValue[0];

 int numErrs = 0;

 ProofreadingResult prRes =

 proofreader.doProofreading("1", sent, loc,

 0, sent.length(), props);

 if (prRes != null) {

 SingleProofreadingError[] errs = prRes.aErrors;

 if (errs.length > 0)

 for(SingleProofreadingError err : errs) {

 printProofError(sent, err);

 numErrs++;

 }

 }

 return numErrs;

} // end of proofSentence()

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 24 © Andrew Davison 2017

public static void printProofError(String str,

 SingleProofreadingError err)

{ String errText = str.substring(err.nErrorStart,

 err.nErrorStart + err.nErrorLength);

 System.out.println("G* " + err.aShortComment +

 " in: \"" + errText + "\"");

 if (err.aSuggestions.length > 0)

 System.out.println(" Suggested change: \"" +

 err.aSuggestions[0] + "\"");

 System.out.println();

} // end of printProofError()

XProofreader.doProofreading() requires a locale and properties array in the same way

as the earlier spell checking and thesaurus methods. It also needs two indices for the

start and end of the sentence being checked, and a document ID which is used in the

error results.

The results are returned as an array of SingleProofreadingError objects, one for each

detected error. It's worth having a look at the documentation for the

SingleProofreadingError class (use "lodoc SingleProofreadingError"), since the

object contains more information than I've used in Write.printProofError(); for

example, the ID of the grammar rule that was 'broken', a full comment string, and

multiple suggestions in a String array.

Grammar rule IDs are one area where the proof reader API could be improved. The

XProofreader interface includes methods for switching on and off rules based on their

IDs, but there's no way to find out what these IDs are except by looking at

SingleProofreadingError objects.

5. Guessing the Language used in a String

An oft overlooked linguistics API feature is the ability to guess the language used in a

string, which is implemented by one service, LanguageGuessing, and a single

interface, XLanguageGuessing. The documentation for XLanguageGuessing includes

a long list of supported languages, including Irish Gaelic, Scots Gaelic, and Manx

Gaelic.

There are two examples of language guessing in Lingo.java:

// in Lingo.java

 :

Locale loc = Write.guessLocale(

 "The rain in Spain stays mainly on the plain.");

Write.printLocale(loc);

if (loc != null)

 System.out.println("Guessed language: " + loc.Language);

loc = Write.guessLocale(

 "A vaincre sans péril, on triomphe sans gloire.");

 // To win without risk is a triumph without glory.

if (loc != null)

 System.out.println("Guessed language: " + loc.Language);

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 25 © Andrew Davison 2017

The output is:

Locale lang: "English"; country: ""; variant: ""

Guessed language: en

Guessed language: fr

Write.guessLocale() creates the service, its interface, and calls

XLanguageGuessing.guessPrimaryLanguage():

// in the Writer class

public static com.sun.star.lang.Locale guessLocale(String testStr)

{

 XLanguageGuessing guesser =

 Lo.createInstanceMCF(XLanguageGuessing.class,

 "com.sun.star.linguistic2.LanguageGuessing");

 if (guesser == null) {

 System.out.println("No language guesser found");

 return null;

 }

 else

 return guesser.guessPrimaryLanguage(testStr,

 0, testStr.length());

} // end of guessLocale()

XLanguageGuessing actually guesses a locale rather than a language, and the locale

includes information about the language, country and a variant BCP 47 language

label. com.sun.star.lang.Locale stores that information as three strings, but XLocale

has additional methods for displaying the string codes in longer formats (e.g. "th" as

"Thailand"). Unfortunately, I was unable to get code using XLocale to compile, so fell

back to Java's Locale class which includes similar methods.

Write.printLocale() converts an Office locale into a Java version, then prints its data

in long form:

public static void printLocale(com.sun.star.lang.Locale loc)

{

 if (loc != null) {

 java.util.Locale jloc =

 new java.util.Locale(loc.Language, loc.Country, loc.Variant);

 System.out.println("Locale lang: \"" +

 jloc.getDisplayLanguage() +

 "\"; country: \"" + jloc.getDisplayCountry() +

 "\"; variant: \"" + jloc.getDisplayVariant() + "\"");

 }

} // end of printLocale()

6. Spell Checking and Grammar Checking a Document

Lingo.java only spell checks individual words, and grammar checks a single sentence.

The LingoFile.java example shows how these features can be applied to an entire

document.

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 26 © Andrew Davison 2017

One way to scan every sentence in a document is to combine XParagraphCursor and

XSentenceCursor, as in the TalkingBook.java example from Chapter 5, section 6. An

outer loop iterates over every paragraph using XParagraphCursor, and an inner loop

splits each paragraph into sentences with the help of XSentenceCursor. Initially, I

coded LingoFile.java in this way, but found that XSentenceCursor occasionally didn't

divide a paragraph into the correct number of sentences; sometimes two sentences

were treated as one.

So I switched to a combined Office/Java approach – the outer loop in LingoFile.java

still utilizes XParagraphCursor to scan the paragraphs, but the sentences in a

paragraph are extracted using a sentence-based BreakIterator.

The main() function of LingoFile.java:

public static void main(String args[])

{

 if (args.length < 1) {

 System.out.println("Usage: run LingoFile <fnm>");

 return;

 }

 XComponentLoader loader = Lo.loadOffice();

 XTextDocument doc = Write.openDoc(args[0], loader);

 if (doc == null) {

 System.out.println("Could not open " + args[0]);

 Lo.closeOffice();

 return;

 }

 // load spell checker, proof reader

 XSpellChecker speller = Write.loadSpellChecker();

 XProofreader proofreader = Write.loadProofreader();

 BreakIterator bi = BreakIterator.getSentenceInstance(

 java.util.Locale.US);

 // iterate through the doc by paragraphs

 XParagraphCursor paraCursor = Write.getParagraphCursor(doc);

 paraCursor.gotoStart(false); // go to start of text

 String currPara;

 do {

 paraCursor.gotoEndOfParagraph(true);

 // select all of paragraph

 currPara = paraCursor.getString();

 if (currPara.length() > 0)

 checkSentences(currPara, bi, speller, proofreader);

 } while (paraCursor.gotoNextParagraph(false));

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

Write.loadSpellChecker() hides the creation of the linguistics manager, and its

retrieval of the spell checker:

// in the Write class

public static XSpellChecker loadSpellChecker()

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 27 © Andrew Davison 2017

{

 XLinguServiceManager lingoMgr =

 Lo.createInstanceMCF(XLinguServiceManager.class,

 "com.sun.star.linguistic2.LinguServiceManager");

 if (lingoMgr == null) {

 System.out.println("No linguistics manager found");

 return null;

 }

 else

 return lingoMgr.getSpellChecker();

} // end of loadSpellChecker()

The BreakIterator is instantiated in main() using:

BreakIterator bi =

 BreakIterator.getSentenceInstance(java.util.Locale.US);

but employed inside checkSentences(), which splits a paragraph into sentences:

// in LingoFile.java

private static void checkSentences(String currPara,

 BreakIterator bi,

 XSpellChecker speller, XProofreader proofreader)

{

 System.out.println("\n>> " + currPara);

 bi.setText(currPara);

 int lastIdx = bi.first();

 while (lastIdx != BreakIterator.DONE) {

 int firstIdx = lastIdx;

 lastIdx = bi.next();

 if (lastIdx != BreakIterator.DONE) {

 String sentence = currPara.substring(firstIdx, lastIdx);

 Write.proofSentence(sentence, proofreader);

 Write.spellSentence(sentence, speller);

 }

 }

} // end of checkSentences()

The index positions of the start of the current sentence and the start of the next

sentence are stored in firstIdx and lastIdx, and used to extract a substring spanning the

current sentence. This is passed to Write.spellSentence() and Write.proofSentence()

for spell and proof checking. Write.spellSentence() splits the sentence into an array of

words, and calls Write.spellWord() on each one:

// in the Write class

public static int spellSentence(String sent, XSpellChecker speller)

{

 String[] words = sent.split("\\W+"); // split into words

 int count = 0;

 boolean isCorrect;

 for(String word : words) {

 isCorrect = spellWord(word, speller);

 count = count + (isCorrect? 0 : 1);

 }

 return count;

} // end of spellSentence()

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 28 © Andrew Davison 2017

The poorly written "badGrammar.odt" is shown in Figure 19.

Figure 19. Not a Good Example of my Writing Skills.

The output from LingoFile.java when given "badGrammar.odt":

>> I have a dogs. I have one dogs.

G* Possible agreement error in: "a dogs"

 Suggested change: "a dog"

>> I allow of of go home. i dogs. John don’t like dogs. So recieve

no cats also.

G* Word repetition in: "of of"

 Suggested change: "of"

G* This sentence does not start with an uppercase letter in: "i"

 Suggested change: "I"

G* Grammatical problem in: "dogs"

 Suggested change: "dog"

G* 'Also' at the end of sentence in: "also"

 Suggested change: "as well"

* "recieve" is unknown. Try:

No. of names: 8

 "receive" "relieve" "retrieve" "reprieve"

 "reverie" "recitative" "Recife" "reserve"

The grammar errors (those starting with "G*") are produced by the LanguageTool

proof checker. If the default Lightproof checker is utilized instead, then less errors are

found:

>> I have a dogs. I have one dogs.

>> I allow of of go home. i dogs. John don’t like dogs. So recieve

no cats also.

G* Word duplication? in: "of of"

 Suggested change: "of"

G* Missing capitalization? in: "i"

 Suggested change: "I"

* "recieve" is unknown. Try:

No. of names: 8

 "receive" "relieve" "retrieve" "reprieve"

 "reverie" "recitative" "Recife" "reserve"

Java LibreOffice Programming. Chapter 10. Linguistics Draft #3 (20th March 2017)

 29 © Andrew Davison 2017

On larger documents, such as the Sherlock Holmes short story in "bigStory.doc", it's a

good idea to redirect the voluminous output to a temporary file so it can be examined

easily.

More than half the errors for "bigStory.doc" are spurious reports of unpaired quotes.

The output can be considerably reduced if LanguageTool's unpaired rule is disabled,

via the Options dialog in Figure 17. Figure 20 shows the dialog with the "Unpaired"

checkbox deselected in the Punctuation section.

Figure 20. The LanguageTool Options Dialog

with the Unpaired Rule Deselected.

The majority of the remaining errors are words unknown to the spell checker, such as

names and places, and British English spellings.

Most of the grammar errors relate to how direct speech is written. The grammar

checker mistakenly reports an error if the direct speech ends with a question mark or

exclamation mark without a comma after the quoted text.

On balance, I'd say that Sir Arthur Conan Doyle was an excellent speller and

grammarian, or his copy editor was.

